
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-1998-208953
ICASE Interim Report No. 33

The Tera Multithreaded Architecture and
Unstructured Meshes

Shahid H. Bokhari
University of Engineering and Technology, Lahore, Pakistan

Dimitri J. Mavriplis
ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

December 1998

Prepared for Langley Research Center
under Contract NAS1-97046

THE TERA MULTITHREADED ARCHITECTURE AND UNSTRUCTURED MESHES∗

SHAHID H. BOKHARI† AND DIMITRI J. MAVRIPLIS‡

Abstract. The Tera Multithreaded Architecture (MTA) is a new parallel supercomputer currently being
installed at San Diego Supercomputing Center (SDSC). This machine has an architecture quite different from
contemporary parallel machines. The computational processor is a custom design and the machine uses
hardware to support very fine grained multithreading. The main memory is shared, hardware randomized
and flat. These features make the machine highly suited to the execution of unstructured mesh problems,
which are difficult to parallelize on other architectures.

We report the results of a study carried out during July-August 1998 to evaluate the execution of EUL3D,
a code that solves the Euler equations on an unstructured mesh, on the 2 processor Tera MTA at SDSC.

Our investigation shows that parallelization of an unstructured code is extremely easy on the Tera. We
were able to get an existing parallel code (designed for a shared memory machine), running on the Tera
by changing only the compiler directives. Furthermore, a serial version of this code was compiled to run
in parallel on the Tera by judicious use of directives to invoke the “full/empty” tag bits of the machine to
obtain synchronization. This version achieves 212 and 406 Mflop/s on one and two processors respectively,
and requires no attention to partitioning or placement of data—issues that would be of paramount importance
in other parallel architectures.

Key words. parallel computing, multiprocessors, supercomputing, multithreaded architectures, Tera
computer, unstructured meshes

Subject classification. Computer Science

1. Introduction. The Tera Multithreaded Architecture (MTA) is a new parallel supercomputer cur-
rently being installed at San Diego Supercomputing Center (SDSC). This machine has an architecture quite
different from those of other contemporary parallel machines. It has a flat, shared memory without locality
and has hardware support for very fine grained multithreading. The machine and its associated parallelizing
compiler promise great ease in scalable parallel computing.

We report the results of a study carried out during July-August 1998 in which we evaluated the porting
of an unstructured mesh code to the Tera. Algorithms based on unstructured meshes are ordinarily very
difficult to parallelize efficiently on conventional parallel machines. Our results show that code can be ported
with great ease to the Tera and that the performance achieved is very promising.

We first discuss, in Section 2, how the Tera architecture attempts to compensate for the limitations of
conventional parallel machines. We describe the architecture of the machine in some detail in Section 3. In
Section 4 we describe our unstructured mesh solver and how it was ported to the Tera. Two variants of the
code were ported: the measured performance of these codes is presented in Sections 4 and 5 respectively. In
Section 7, we conclude with a discussion of the problems we encountered and our plans for future research.

∗This research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-

97046 while the authors were in residence at the Institute for Computer Applications in Science and Engineering (ICASE),

NASA Langley Research Center, Hampton, VA 23681-2199. This research was made possible by access to the Tera MTA at

the San Diego Supercomputer Center, which receives major support from the National Science Foundation.
†Department of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan (shahid@icase.edu).
‡Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA

23681-2199 (dimitri@icase.edu).

1

2. The State of Parallel Computing. Despite nearly half a century of research and development,
truly general purpose parallel computing remains an elusive goal. Very careful programming and a good
knowledge of the target computer’s architecture are required to achieve even modest performance. At the
same time, the wide diversity in available parallel architectures means that a program successfully ported
to one machine may require considerable reworking to run on another. This discourages practitioners from
exploiting parallel computing and confines the field to experts, academicians and researchers. Finally an
inordinate effort is required to successfully parallelize an algorithm and even then the achieved performance
is poor compared with the theoretical peak.

There are a number of reasons for the above mentioned state of affairs. Firstly, with currently available
distributed memory machines, parallel computing involves a never-ending battle to match computation to
architecture. Parallel machines necessarily involve large numbers of interconnected processors. The utiliza-
tion of these processors is inevitably linked to how well the structure of the computation matches (or can be
transformed to match) the structure of the machine. The process of transformation may involve partition-
ing, mapping and reordering of data, as well as reformulation of the computation. These transformational
requirements lead to major combinatorial problems that are often more difficult than the actual problem
being solved. The programmer is required to have extensive knowledge of the interconnect network, cache
hierarchy, arithmetic unit etc.

Figure 2.1 sketches how the quest for utilization has evolved over time on uniprocessors. The checkered
rectangles in this figure represent the hardware-time products for the indicated architectures–the higher the
utilization, the larger the fraction of grey blocks in this rectangle. A simple, primitive processor’s hardware
could be utilized only to a limited extent. Among the first developments in computer architecture was the
evolution of pipelined processors that could deliver higher utilization for certain types of operations. This
higher utilization required additional investments in ‘performance enhancing’ hardware, that is hardware
that did not contribute to actual computation but was required to improve the utilization of the ‘productive’
hardware. A modern pipelined processor improves utilization by considerable investment in such performance
enhancing hardware as well as in sophisticated compilers. At the same time, the programmer may have to
make some investment in transforming his program, or even the underlying algorithm, to better utilize the
specific hardware. Figure 2.1 also shows that, in a contemporary pipelined machine, some of the work done
by the hardware may be wasted because of speculative execution.

A modern parallel processor requires relatively larger hardware and software investments to obtain
adequate utilization. Figure 2.2 illustrates how the productive hardware (that carries out the actual com-
putations for our program) has to be augmented with additional hardware and software. A contemporary
high-performance parallel machine requires performance enhancing hardware in the form of caching units,
high speed interconnect, synchronization mechanism, etc. Furthermore, considerable investment may need
to be made in compilers, in an operating system, and for analysis tools. Parallel programming platforms
such as PVM [5, 6], MPI [7], PARTI [1], and PETSc [4] constitute part of the software overhead. Finally the
programmer needs to invest considerable effort in developing his program, rethinking his algorithm and, of
course, in the difficult issues of partitioning, mapping, scheduling, etc. Despite these overheads, the utiliza-
tion achieved by such processors is low; indeed, there are large classes of problems for which these machines
are considered unsuitable.

One approach to improving utilization is to invest in additional hardware and software to support paral-
lelism, possibly at the expense of additional compiler overhead. Figure 2.3 illustrates how specially designed
hardware can be used to offload the burden placed on the programmer and on parallelism support software.

2

ha
rd

w
ar

e

time

(e.g. reservation table)
performance enhancing h/w

ha
rd

w
ar

e

��
��
��
��
��
��
��
����
��
��
����
��
��
��
��
��
��
��

��
��
��
��

��
��
��
����
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Simple processor:

ha
rd

w
ar

e

performance enhancing h/w
(e.g. instruction reordering

buffer, cache, etc.)

time

=
w

as
te

d
=

us
ef

ul
=

id
le

Pipelined processor:

time

Modern pipelined processor:

programmer effort,
algorithmic investment

compiler

h/
w

s/
w

to
ta

l i
nv

es
tm

en
t

Fig. 2.1. The Quest for Utilization. As uniprocessors have evolved over time, the investment in non-productive ‘perfor-

mance enhancing’ hardware has increased. A modern machine also requires considerable investment in compiler development.

This proposal rules out the possibility of using commodity microprocessors for parallel processing and re-
quires a protracted cycle of development and production. However the potential benefits are very attractive.
The Tera Multithreaded architecture (MTA) uses this path, as described in Figure 2.4. By investing heavily
in performance enhancing hardware, the Tera is able to eliminate the issues of parallelism support and data
partitioning, etc. Higher investment in hardware reduces the effort required by the programmer and also
increases the utilization of the productive hardware.

3

time

Modern parallel processor:

pr
od

uc
tiv

e
ha

rd
w

ar
e

to
ta

l i
nv

es
tm

en
t

compiler

analysis tools
operating system

performance enhancing h/w

interconnect

PETSc

so
ftw

ar
e

ha
rd

w
ar

e
PARTI

parallelism support:
PVM, MPI

ov
er

he
ad

cache coherence

synchronization

programmer effort,
algorithmic investment

partitioning,
mapping, scheduling

reordering

Fig. 2.2. Parallel Computing: Investment and Return. A modern parallel processor achieves low utilization despite

considerable investment in hardware and software.

3. Key Features of the Tera Architecture. Detailed information on the Tera architecture may be
found in [2, 3] and at the Tera web site1. We present a brief overview.

3.1. Zero overhead thread switching. The Tera has special purpose hardware (streams) that can
hold the state of up to 128 threads (per processor). On each clock cycle, each processor switches to a different
resident thread and issues one instruction from that thread. A blocked thread (for example, one waiting for
word from memory or for a synchronization event) causes no overhead, the processor executes the instruction

1www.tera.com

4

time

pr
od

uc
tiv

e
ha

rd
w

ar
e

to
ta

l i
nv

es
tm

en
t

compiler

analysis tools
operating system

performance enhancing h/w

interconnect

PETSCI

so
ftw

ar
e

ha
rd

w
ar

e

PARTI

parallelism support:
PVM, MPI

ov
er

he
ad

synchronization

custom processor,

programmer effort,
algorithmic investment

partitioning
mapping, scheduling

reordering

Fig. 2.3. Additional investment in hardware reduces software overhead (functions migrate into hardware).

of some other ready thread.

3.2. Pipelined Processors. Each processor in the Tera system has 21 stages. As each processor
accepts an instruction from a different stream at each clock tick, at least 21 ready threads are required to
keep it fully utilized. Since the state of up to 128 streams is kept in hardware, this target of 21 ready threads
is easy to achieve.

5

time

pr
od

uc
tiv

e
ha

rd
w

ar
e

utilization
High

full/empty bits ...

programmer effort,
algorithmic investment

Low
effort

compiler
operating system

analysis tools

so
ftw

ar
e

performance enhancing h/w
custom processor,ov

er
he

ad

Higher
investmentinterconnect,

multithreading,

to
ta

l i
nv

es
tm

en
t

ha
rd

w
ar

e

Fig. 2.4. The Tera Idea: Higher investment in hardware yields improved utilization and also reduces software overhead.

3.3. Flat Shared Memory. All memory locations on the Tera are 64 bit words. Addresses are hashed
by hardware to randomly scatter them across memory banks. The cycle time per memory bank is 35 clock
ticks. The access time varies from 150–200 clock ticks, depending upon the size of the system. The 21 stage
processor pipeline is dwarfed by the ≈ 150 cycles of latency to memory. This mismatch is overcome by
having more than 21 threads, each with lookahead or performing non-memory operations. A processor will
typically have hundreds of memory references outstanding. As a result of these features, the memory has no
locality and there are no issues of partitioning or mapping on the machine.

6

pipeline
(21- stage)

threads
(corresponding to one or

OS functions)
more parallel programs +

128 streams
(hardware for holding

states of threads)

Fig. 3.1. The Tera Architecture (1 processor)

3.4. Extremely fine-grained synchronization. Each 64 bit word of memory has an associated
full/empty bit. A memory location can be written into or read out of using ordinary loads and stores, as in
conventional machines. We can also do load and stores under the control of the full/empty bit. For example,
a “read-full set-empty” instruction will read data from a location only if that location’s full/empty bit is set.
It will set the full/empty bit to empty after successfully executing the read. If the full/empty bit is not set,
the thread executing the read will be suspended (by hardware) and will resume only when the bit is set full
by some other thread. This feature allows extremely fine-grained synchronization and is detailed in Section
5.1.

3.5. Tera Performance Characteristics. The Tera is designed to operate on a 300 MHz Clock. At
the present time the clock is running at 255 MHz. There are three units in each processor, all of which may
be active during a single cycle:

unit Operation flop

M (Memory) – 0
A (Arithmetic) fused multiply-add 2
C (Control) add 1

Total 3

7

Shared
Memory

Interconnection
Network

128 virtual processors

128 virtual processors

128 virtual processors

Fig. 3.2. A View of the Tera Multiprocessor. Each stream may be thought of as a virtual processor. Some streams may

be needed to execute OS functions–a user may not be able to use all 128 streams per processor.

Thus “peak” performance is 3× 300 = 900 MFlop/s. We have measured 210 MFlop/s on actual code at
255 MHz, this extrapolates to 274 MFlop/s at 300 MHz.

4. The Numerical Solver. The code that we chose to implement on the Tera is a representative kernel
from EUL3D, a 3D unstructured grid Euler solver. This code uses vertex based variables and an edge-based
loop for residual construction. The kernel reproduces edge based flux loops and vertex based updates.

Unstructured mesh problems have traditionally been difficult to parallelize because of their need for
partitioning, mapping and load balancing. Furthermore, because of the indirect access to the grid data, such
problems are hard to compile.

On the Tera these become non-issues because

1. Partitioning and mapping are not needed because of the flat shared memory which has no locality,
and

2. Load balancing is not needed because of very fine grained multithreading: loops can be dynamically
scheduled across processors with very little overhead.

The specific problem we experimented with has 53961 nodes and 353476 edges. This is considered to
be a medium-sized problem in the aerodynamics community—a large problem would have 0.3 million nodes

8

Fig. 4.1. Unstructured meshes are widely used in aerodynamic and structural analysis codes. Because of the enormous,

irregular variations in density, algorithms based on such meshes are difficult to parallelize on conventional multiprocessors.

and 3 million edges.

At each node of our mesh we store density, momentum (x, y, z components), energy, pressure, plus some
scratch space. This results in approximately 10 variables per node.

For each edge we need to store the identity of the 2 nodes at its end points plus a vector describing the
orientation of the edge. We thus have ≈ 5 variables per edge.

The movement of data in the edge based loop is described in Figure 4.2. Pseudocode corresponding to
this loop is given below.

do i=1, totalNodes

initialize variables

enddo

do cycle=1, totalCycles

do i=1, totalNodes

clear residuals

enddo

do i=1, totalEdges

compute residuals

enddo

9

n1

n2
read variables

n2

n1

update variables

momentum (),x,y,z

n1

n2

Variables at edge::
 identity of nodes,

density,

energy,
pressure

Variables at each node:

orientation(x,y,z)

n2

n1

(∼∼
compute:

125 floating pt)

Fig. 4.2. Computation in the Edge Based Loop

do i=1, totalNodes

update variables

enddo

enddo

4.1. Parallel Implementation. When executing the edge based loop in parallel, it is important to
ensure that two threads do not attempt to update the same node at the same time. A simple way of ensuring

10

this is to color the edges of the graph so that no edges incident on same node have the same color. Once
this has been done, all edges with the same color can be processed in parallel.

Although the problem of finding the minimum color edge coloring of a graph is intractable, our primary
objective is to obtain a coloring with a reasonable number of colors. A simple greedy algorithm is fast and
effective for our purposes. On our sample problem, which has average degree 14, our algorithm yields 24
colors.

In the pseudocode for the edge colored algorithm, given below, the compiler has to be told to parallelize
the edge loop. This is because it has no way of knowing about the coloring, and cannot establish that it is
safe to parallelize the loop just by looking at the code. The C$TERA ASSERT PARALLEL compiler directive is
used for this purpose.

do i=1, totalNodes

initialize variables

enddo

do cycle=1, totalCycles

do i=1, totalNodes

clear residuals

enddo

do i=1, totalColors

C$TERA ASSERT PARALLEL

do (for each edge of color i)

compute residuals

enddo

enddo

do i=1, totalNodes

update variables

enddo

enddo

4.2. Performance of Colored Algorithm. The performance of the colored algorithm was measured
by

• Varying number of streams (1 to 100)
• Varying number of processors (1 to 2)

The Tera compiler normally selects the number of streams for each parallel loop, based on estimated grain
size and expected number of iterations. It is difficult to vary streams under programmer control, but can
be done. The procedure is to insert the compiler directive C$TERA USE n STREAMS, before every loop in the
program, and then recompile. This is a tedious and time consuming procedure, and we hope that Tera will
provide a more convenient alternative in the near future.

It is possible to select any subset of processors to run on, using a bit vector supplied on the command
line. Thus, on a four processor system -p 0011 would use the 3rd and 4th processors only. This is a run
time option: no recompilation is required.

11

0.10

0.15

0.20
0.25
0.30

0.40
0.50

0.80
1

2

3

4
5
6

8
10

1 10 20 30 50 70 100

tim
e/

cy
cl

e
(s

ec
)

streams per processor

EUL3D, nodes=53961, edges=353476, Edge Coloring

1 Proc

2 Proc

compiler
selected
streams

Fig. 4.3. Performance of colored algorithm

The plot in Figure 4.3 shows the performance of the colored algorithm as the number of streams is
varied. The plot labeled 1 Proc shows the performance of the algorithm on one processor. The time per
cycle drops very smoothly from 1 to 30 streams and flattens out at 60 streams. The speedup is about 40.
The straight line next to this curve shows ideal speedup.

If we had not controlled the number of streams ourselves but had let the compiler do so, it would have
selected 60 streams, a good choice in this case.

The plot labeled 2 Proc shows the performance of this algorithm on two processors. The straight line
next to this plot is ideal speedup, based on the one processor-one stream time (the highest data point on the
y-axis.) Time per cycle drops smoothly as before but there is a significant difference between the observed
and ideal speedups. This is conjectured to be the result of network congestion, in part because the network
at SDSC is missing ‘wraparound’ links.

In the 2 processor case the speedup continues up to 80 streams, showing that it is sometimes useful to
override the compiler selected number of streams. We obtain nearly 5% improvement by doing so.

5. The Update Algorithm. The coloring algorithm presented above has two overheads:

1. the time required to actually color the edges and reorganize data (this is a one time cost, assuming
the mesh is static), and

12

2. the overhead of executing the color loop (this includes synchronization overhead at the bottom of
the loop).

The full/empty bits of the Tera permit very fine grained synchronization and thus let us eliminate these
overheads. The serial algorithm can be run in parallel on the Tera, provided the compiler is warned about
the sections of codes where it should ensure atomic updates. In this case the preprocessing step of coloring
and reorganizing data is not required and the overhead of the color loop and its associated synchronization
costs are avoided.

5.1. Using the Full/Empty bits. The behavior of the Tera’s full/empty bits may be summarized as
follows

• A synchronized write into a variable succeeds only if it is empty, when the write completes, the
location is set full.

• A thread attempting a synchronized write into a full location will be suspended (by hardware) and
will resume only when that location becomes empty.

• A synchronized read from a variable succeeds only if it is full, when the read completes, the location
is set empty.

• A thread attempting a synchronized read from an empty location will be suspended (by hardware)
and will resume only when that location becomes full.

There are several ways of using the full/empty bits, as detailed below.

5.1.1. Synchronized Variables. A variable can be declared synchronized thus:
sync real dw(100)

In this case, writes and reads to/from dw() will follow the full/empty rules given above. This approach
requires careful thought and is not recommended for porting existing codes. However it may result in
concise and elegant code when a program is written from the ground up with synchronized variables in
mind.

5.1.2. Machine generics. Machine language instructions such as WRITEEF() (“wait until a variable
is empty, then write a value into it, and set the full/empty bit to full”) can be invoked from within Fortran
or C. Thus, to ensure that the Fortran update
dw(i) = dw(i) - xincr

is handled properly when several threads are using the same value of i, we could use
call WRITEEF(dw(i), READFE(dw(i)) - xincr)

WRITEEF, READFE, ... are not compiled into function or subroutine calls–they become individual Tera
machine instructions.

This technique is the most flexible and gives full control to the programmer, who has the option of using
regular load/stores as well as full/empty bit controlled load/stores on a variable as and where he desires.

The disadvantage in this case is that code starts looking messy.

5.1.3. Compiler directives. Compiler directives can be used to make the compiler use full/empty
bits to ensure correct updating. For example, in the following code fragment,
C$TERA UPDATE

dw(i) = dw(i) - xincr

the directive instructs the compiler to insert appropriate machine instructions.
This is the cleanest solution as it requires no change to serial code and does not obfuscate the program

text. This is the solution we have used. However this approach may not work in all situations.

13

0.10

0.15

0.20
0.25
0.30

0.40
0.50

0.80
1

2

3

4
5
6

8
10

1 10 20 30 50 70 100

tim
e/

cy
cl

e
(s

ec
)

streams per processor

EUL3D, nodes=53961, edges=353476, Update vs. Color

1 Proc

2 Proc

compiler
selected
streams

Fig. 5.1. Update code vs. coloring: Absolute improvement.

5.1.4. Compiler detection. It is also possible for the compiler to detect program statements where
use of full/empty bits would be required and insert the required machine instructions. This is the least
intrusive solution but, as in the update approach described above, may not work in all cases. We did not
have time to experiment with this approach.

5.2. Performance of the Update Code. The improvement obtained by moving from the traditional
edge coloring code to the update code is shown in Figures 5.1 & 5.2. Recall that the update code is just
the serial code with the addition of a few compiler directives. These directives cause the Tera to use its
full/empty bits to ensure correct updating. This eliminates the overhead of the edge color loop and its
associated synchronization. Figure 5.1 shows that there is a consistent improvement for both one and two
processors. The ratio of the run times for the two programs is shown in Figure 5.2, for both one and two
processors. We can see a consistent 4 to 6 % improvement for 2 processors, over the range of 1–60 streams.

5.3. Stream Efficiency. A stream is a piece of hardware. It is interesting to explore how the stream
efficiency varies as more and more streams are dedicated to our problem. Figure 5.3 shows our results.

In this figure, the plot labeled “1 Proc” shows

(time for 1 processor, 1 stream)/s

time for 1 Processor, s streams

14

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

20 40 60 80 100

Im
pr

ov
em

en
t

streams per processor

EUL3D, nodes=53961, edges=353476, Improvement: Update vs. Coloring

2 Proc

1 Proc

Fig. 5.2. Update code vs. coloring: Relative improvement.

The plot labeled “2 Proc” shows

(time for 1 processor, 1 stream)/2s

time for 2 Processors, s streams per proc

We can see that stream efficiency is quite good on one processor. It is well above 90% for 1–30 streams
and nearly 75% for 60 streams (the compiler selected number of streams for our code).

The gap between the 1 and 2 processor curves is significant and is presumably caused by the limitations
of the current network.

6. Experiments with Grain Size. The “edge-based” loop in EUL3D is used in numerous other
unstructured mesh problems. Other problems might have grain sizes very different from EUL3D. To get an
idea of how performance would vary as the grain size changed, we artificially modified the EUL3D solver2.

The original solver has 12 variables per node. We modified these to 6 and 22. We also modified the
computations in the edge loop to roughly halve or double them.

The results of these experiments are summarized in Figure 6.1 and Table 6.1. The plots show that the
speedup curves follow generally the same pattern. The small code, performance saturates somewhat earlier

2The experiments in this Section were suggested by David Keyes.

15

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

S
tr

ea
m

 E
ffi

ci
en

cy

streams per processor

EUL3D, nodes=53961, edges=353476, Update: Stream Efficiency

1 Proc

2 Proc

Fig. 5.3. Stream Efficiency

Table 6.1

Summary of Grain Size Experiments

Code Vars/ MFlop/ MFlop/s MFlop/s
Version node cycle (1 Proc) (2 Proc)

Large 22 74.9 187 325
Original 12 48.7 212 406
Small 6 29.5 211 393

These measurements are at 255MHz.

than the original code, presumably because there is less work per iteration. The large code’s performance
is more smooth and, for two processors, the speedup continues to 100 streams. However when looking at
the delivered Megaflops per second, we see some dramatic decreases for the large code. These decreases are
conjectured to be the result of network congestion or perhaps register overflow and deserve further study
once a larger machine becomes available.

7. Conclusions. Our experience with the Tera has generally been positive. We were able to port an
existing edge colored parallel code (previously run on the SPP-2000) by changing only the parallelization

16

0.10

0.15
0.20
0.25
0.30
0.40
0.50

0.80
1

2

3
4
5
6
8

10

1 10 20 30 50 70 100

tim
e/

cy
cl

e
(s

ec
)

streams per processor

EUL3D, nodes=53961, edges=353476, Update: Varying Grain Size

large

orig

small

1
2

1
2

1
2

Fig. 6.1. Effect of Varying Grain

directives.

We also parallelized an existing serial code (previously run on workstations) on the Tera with the addition
of a few compiler directives. In this case we invoked the full/empty mechanism of the machine and thus
eliminated the overhead of the edge colored loop.

Both versions of our code were run on 1 and 2 processors. No changes will be required to run on any
additional number of processors.

7.1. Problems Encountered. Two main problems were encountered during the course of this research
on the Tera. Firstly, since the Tera stores everything in 64 bit words, there was a compatibility problem
with the 32 bit integers used in our binary grid file. The obvious solution is to tell the compiler to use 32
bit integers throughout, but this creates a further problem because 32 bit loop indices confuse the compiler.
A better solution is to rewrite the binary file so that all variables are 64 bits.

A second, and more aggravating, problem is that there is no way to control the number of streams at
run time. For the researcher, such a facility would permit an evaluation of how performance varies with the
number of streams. For the practitioner it may often be useful for squeezing out maximum performance
for a single, important standalone application by allocating the maximum number of streams to it. At the
present time experiments of the type detailed in this report require a recompilation for every change in the

17

number of streams. This is a tedious and annoying process.

7.2. Future Work. We have demonstrated the parallelization and performance of our code on the
existing 2 processor Tera MTA at SDSC. Our primary aim for the future is to run on 4, 8 or 16 processor
systems, as they become available, so as to provide a convincing demonstration of sustained Megaflop/s. To
provide a more detailed evaluation, we also plan to run larger and smaller meshes.

The edge based loop used in EUL3D is at the heart of many other unstructured mesh algorithms. It
will therefore be of interest to port other unstructured mesh problems to the Tera.

Cell based (as opposed to edge based) loops should be similarly easy to parallelize and need to be
investigated.

Finally, we plan to port other non-uniform problems, such as multiblock. The Tera’s insensitivity to
memory access patterns will be a major asset for such problems.

8. Acknowledgments. We are grateful to Manuel Salas, Director ICASE, for his encouragement of this
research and to Wayne Pfeiffer for arranging access to the Tera MTA at San Diego Supercomputing Center.
John van Rosendale, David Keyes, Piyush Mehrotra and Tom Crockett provided valuable assistance. Allan
Snavely, John Feo and Bracy Elton generously shared their knowledge of the MTA with us and lightened
our burden considerably.

This research would not have been possible without the hospitality of David Chestnut, Oktay Baysal
and Richard Barnwell at the Virginia Consortium of Science & Engineering Universities (VCES).

9. Web Sites of Interest.

www.tera.com

www.sdsc.edu

www.icase.edu

REFERENCES

[1] D.J. Mavriplis, R. Das, J. Saltz and R.E. Vermeland, Implementation of a parallel unstructured
Euler solver on shared and distributed memory machines, The Journal of Supercomputing 8, No. 4
(1995), pp. 329-344.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield and B. Smith, The
Tera Computer System, Supercomputing (1990), pp. 1-6.

[3] G. Alverson, R. Alverson, D. Callahan, B. Koblenz, A. Porterfield, and B. Smith,
Exploiting heterogeneous parallelism on a multithreaded multiprocessor, Supercomputing (1992),
pp. 188.

[4] S. Balay, W.D. Gropp, L.C. McInnes and B.F. Smith, PETSc home page,
www.mcs.anl.gov/petsc, 1998.

[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, PVM: Parallel
Virtual Machine, A User’s Guide and Tutorial for Networked Parallel Computing, MIT Press, 1994.

[6] PVM home page, www.epm.ornl.gov/pvm/pvm_home.html
[7] W. Gropp, E. Lusk and A. Skjellum, Using MPI, MIT Press, 1994.
[8] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K.S. Gatlin, N. Mitchell, J. Feo

and B. Koblenz, Multi-processor Performance on the Tera MTA, to be presented at SC98,
www.sdsc.edu/~allans /SC98-MTA/abstract.html

18

